ELAN Home Systems Network Card EM78P458 User Manual

EM78P458/459  
OTP ROM  
EM78P458/459  
8-BIT MICRO-CONTROLLER  
Version 1.3  
ELAN MICROELECTRONICS CORP.  
No. 12, Innovation 1st RD., Science-Based Industrial Park  
Hsin Chu City, Taiwan, R.O.C.  
TEL: (03) 5639977  
FAX: (03)5782037(SL) 5630118 (FAE)  
 
EM78P458/459  
OTP ROM  
1. GENERAL DESCRIPTION  
EM78P458 and EM78P459 are 8-bit microprocessors designed and developed with low-power and  
high-speed CMOS technology. It is equipped with a 4K*13-bit Electrical One Time Programmable Read  
Only Memory (OTP-ROM). With its OTP-ROM feature, it is able to offer a convenient way of developing  
and verifying user’s programs. Moreover, user can take advantage of EMC Writer to easily program his  
development code.  
This specification is subject to change without prior notice.  
3
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
2. FEATURES  
• Operating voltage range: 2.3V~5.5V  
• Operating temperature range: 0°C~70°C  
• Operating frequency range(base on 2 clocks):  
* Crystal mode: DC ~ 20MHz/2clks,5V; DC ~ 8MHz/2clks,3V  
* RC mode: DC ~ 4MHz/2clks,5V; DC ~ 4MHz/2clks,3V  
• Low power consumption:  
* Less than 1.5 mA at 5V/4MHz  
* Typically 15 µA, at 3V/32KHz  
* Typically 1 µA, during sleep mode  
• 4K × 13 bits on chip ROM  
• 84 × 8 bits on chip registers (SRAM)  
• 2 bi-directional I/O ports  
• 8 level stacks for subroutine nesting  
• 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt  
• 8-bit multichannel Analog-to-Digital Converter with 8-bit resolution  
• Dual Pulse Width Modulation (PWM ) with 10-bit resolution  
• One pair of comparators  
• Power-down (SLEEP) mode  
• Six available interruptions  
* TCC overflow interrupt  
* Input-port status changed interrupt (wake up from the sleep mode)  
* External interrupt  
* ADC completion interrupt  
* PWM period match completion  
* Comparator high interrupt  
• Programmable free running watchdog timer  
• 8 Programmable pull-down I/O pins  
• 7 programmable pull-high I/O pins  
• 8 programmable open-drain I/O pins  
• Two clocks per instruction cycle  
This specification is subject to change without prior notice.  
4
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
• Package types:  
* 20 pin DIP 300mil  
* 20 pin SOP 300mil  
: EM78P458AP  
: EM78P458AM  
* 24 pin skinny DIP 300mil : EM78P459AK  
* 24 pin SOP 300mil : EM78P459AM  
• Power on voltage detector available (2.0V± 0.15V)  
This specification is subject to change without prior notice.  
5
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
3. PIN ASSIGNMENT  
P56/CIN+  
P57/CO  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P55/CIN-  
P54/TCC  
OSCI  
2
P60/ADC1  
P61/ADC2  
ENTCC  
3
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P55/CIN-  
P54/TCC  
OSCI  
P56/CIN+  
P57/CO  
1
4
OSCO  
2
5
RESET  
3
P60/ADC1  
P61/ADC2  
VSS  
VSS  
6
VDD  
4
OSCO  
VSS  
7
VDD  
5
VDD  
P62/ADC3  
P63/ADC4  
P64/ADC5  
P65/ADC6  
P66/ADC7  
8
P53/VREF  
P52/PWM2  
P51/PWM1  
P50/INT  
P67/ADC8  
6
P53/VREF  
P52/PWM2  
P51/PWM1  
P50/INT  
P67/ADC8  
P62/ADC3  
P63/ADC4  
P64/ADC5  
P65/ADC6  
P66/ADC7  
9
7
10  
11  
12  
8
9
10  
Fig. 1 Pin Assignment  
Table 1 EM78P458 Pin Description  
Symbol Pin No. Type  
VDD  
Function  
16  
18  
-
I
Power supply.  
* XTAL type: Crystal input terminal or external clock input pin.  
* RC type: RC oscillator input pin.  
OSCI  
*XTAL type: Output terminal for crystal oscillator or external clock input  
pin.  
OSCO  
17  
12  
O
*RC type: Clock output with a period of one instruction cycle time, the  
prescaler is determined by the CONT register.  
* External clock signal input.  
* General-purpose Input only.  
* Default value while power-on reset.  
P50  
I
13~15  
19, 20,  
1, 2  
* General-purpose I/O pin.  
* Default value while power-on reset.  
P51 ~ P57  
I/O  
3, 4,  
6~11  
12  
3, 4,  
6 ~ 11  
13, 14  
* General-purpose I/O pin.  
P60 ~ P67  
INT  
I/O  
* Default value while power-on reset.  
* External interrupt pin triggered by falling edge.  
* Analog to Digital Converter.  
* Defined by AD-CMPCON (IOCA0)<2:4>.  
* Pulse width modulation outputs.  
I
I
ADC1~ADC8  
PWM1,  
O
This specification is subject to change without prior notice.  
6
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
PWM2  
VREF  
* Defined by PWMCON (IOC51)<6, 7>  
* External reference voltage for ADC  
* Defined by AD-CMPCON (IOCA0)<7>.  
15  
I
* “-“ -> the input pin of Vin- of the comparator.  
* “+”-> the input pin of Vin+ of the comparator.  
* Pin CO is the output of the comparator.  
* Defined by AD-CMPCON (IOCA0) <5, 6>  
* Real time clock/counter with Schmitt trigger input pin; it must be tied to  
VDD or VSS if it is not in use.  
CIN-, CIN+,  
CO  
I
O
20, 1,2  
TCC  
VSS  
19  
5
I
-
Ground.  
Table 2 EM78P459 Pin Description  
Symbol Pin No. Type  
VDD  
Function  
19, 18  
22  
-
I
Power supply.  
* XTAL type: Crystal input terminal or external clock input pin.  
* RC type: RC oscillator input pin.  
OSCI  
* XTAL type: Output terminal for crystal oscillator or external clock input  
pin.  
OSCO  
21  
14  
O
* RC type: Clock output with a period of one instruction cycle time, the  
prescaler is determined by the CONT register.  
* External clock signal input.  
* General-purpose Input only.  
* Default value while power-on reset.  
P50  
I
15~17  
23, 24  
1, 2  
* General-purpose I/O pin.  
* Default value while power-on reset.  
P51 ~ P57  
I/O  
3, 4,  
8~13  
14  
3, 4,  
8~13  
* General-purpose I/O pin.  
* Default value while power-on reset.  
* External interrupt pin triggered by falling edge.  
* Analog to Digital Converter.  
* Defined by AD-CMPCON (IOCA0)<2:4>.  
P60 ~ P67  
INT  
I/O  
I
I
ADC1~ADC8  
PWM1,  
PWM2  
* Pulse width modulation outputs.  
* Defined by PWMCON (IOC51)<6, 7>  
* External reference voltage for ADC  
15, 16  
17  
O
I
VREF  
* Defined by AD-CMPCON (IOCA0)<7>.  
* ‘-’ -> the Vin- input pins of the comparators.  
* ‘+’ -> the Vin+ input pins of the comparators.  
* Pin CO is the output of the comparator.  
* Defined by AD-CMPCON (IOCA0) <5, 6>  
* If it remains at logic low, the device will be reset.  
* Wake up from sleep mode when pins status changes.  
* Voltage on /RESET/Vpp must not be over Vdd during normal mode.  
* Pull-high is on if /RESET is asserted.  
* Real time clock/counter with Schmitt trigger input pin; it must be tied to  
VDD or VSS if it is not in use.  
CIN-, CIN+,  
CO  
24, 1, 2  
I
/RESET  
TCC  
20  
23  
I
I
ENTCC  
VSS  
5
6, 7  
I
-
1: Enable TCC; 0: Disable TCC.  
Ground.  
This specification is subject to change without prior notice.  
7
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4. FUNCTION DESCRIPTION  
WDT Timer  
P C  
STACK 0  
STACK 1  
STACK 2  
STACK 3  
STACK 4  
STACK 5  
STACK 6  
STACK 7  
WDT  
Time-out  
Prescaler  
Oscillator/  
Timming  
Control  
/INT  
ROM  
Interrupt  
Control  
Instruction  
Register  
ENTCC  
R1(TCC)  
ALU  
Instruction  
Decoder  
Sleep  
&
RAM  
Wake Up  
Control  
R3  
ACC  
R4  
DATA & CONTROL BUS  
Comparators  
2 PWMs  
8 ADC  
IOC5  
R5  
IOC6  
R6  
PPPPPPPP  
55555555  
01234567  
PPPPPPPP  
66666666  
01234567  
Fig. 2 The Functional Block Diagram of EM78P458/459  
4.1 Operational Registers  
1. R0 (Indirect Addressing Register)  
R0 is not a physically implemented register. Its major function is to perform as an indirect addressing  
pointer. Any instruction using R0 as a pointer, actually accesses data pointed by the RAM Select  
Register (R4).  
2. R1 (Time Clock /Counter)  
• Increased by an external signal edge through the TCC pin, or by the instruction cycle clock.  
• The signals to increase the counter are decided by Bit 4 and Bit 5 of the CONT register.  
• Writable and readable as any other registers.  
3. R2 (Program Counter) & Stack  
• R2 and hardware stacks are 12-bit wide. The structure is depicted in Fig. 4.  
• Generates 4K×13 bits on-chip ROM addresses to the relative programming instruction codes. One  
program page is 1024 words long.  
This specification is subject to change without prior notice.  
8
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
• The contents of R2 are set to all "0"s upon a RESET condition.  
• "JMP" instruction allows the direct loading of the lower 10 program counter bits. Thus, "JMP" allows  
PC to jump to any location within a page.  
• "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus,  
the subroutine entry address can be located anywhere within a page.  
• "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top of stack.  
• "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and tenth bits of  
the PC are cleared.  
• "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the  
ninth and tenth bits of the PC are cleared.  
• Any instruction that is written to R2 (e.g. "ADD R2, A", "MOV R2, A", "BC R2, 6",⋅⋅⋅⋅⋅) will cause the  
ninth bit and the tenth bit (A8~A9) of the PC to be cleared. Thus, the computed jump is limited to the  
first 256 locations of a page.  
• In the case of EM78P458/459, the most two significant bits (A11 and A10) will be loaded with the  
content of PS1 and PS0 in the status register (R3) upon the execution of a "JMP", "CALL", or any  
other instructions set which write to R2.  
• All instructions are single instruction cycle (fclk/2 or fclk/4) except for the instructions which write to  
R2, need one more instruction cycle.  
A11~A10  
A9 ~ A8  
A7  
~
A0  
Stack 0  
Stack 1  
Stack 2  
Stack 3  
Stack 4  
CALL K  
RET  
RETI  
RETL K  
000  
00  
01  
10  
11  
Page 0  
Stack 5  
Stack 6  
Stack 7  
3 FF  
400  
Page 1  
Page 2  
Page 3  
7FF  
800  
BFF  
C00  
FFF  
Fig. 3 Program Counter Organization  
This specification is subject to change without prior notice.  
9
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4. R3 (Status Register)  
7
6
5
4
T
3
2
Z
1
0
CMPOUT  
PS1  
PS0  
P
DC  
C
Bit 7 (CMPOUT) the result of the comparator output.  
Bit 6 (PS1) ~ 5 (PS0) Page select bits. PS0~PS1 are used to select a program memory page. When  
executing a "JMP", "CALL", or other instructions which cause the program counter to be changed  
(e.g. MOV R2, A), PS0~PS1 are loaded into the 11th and 12th bits of the program counter where it  
selects one of the available program memory pages. Note that RET (RETL, RETI) instruction does  
not change the PS0~PS1 bits. That is, the return will always be to the page from the place where the  
subroutine was called, regardless of the current setting of PS0~PS1 bits.  
PS1  
0
PS0  
0
Program memory page [Address]  
Page 0 [000-3FF]  
0
1
Page 1 [400-7FF]  
1
0
Page 2 [800-BFF]  
1
1
Page 3 [C00-FFF]  
Bit 4 (T) Time-out bit. Set to 1 by the "SLEP" and "WDTC" commands, or during Power on and reset  
to 0 by WDT time-out.  
Bit 3 (P) Power-down bit. Set to 1 during power-on or by a "WDTC" command and reset to 0 by a  
"SLEP" command.  
Bit 2 (Z) Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.  
Bit 1 (DC) Auxiliary carry flag  
Bit 0 (C) Carry flag  
5. R4 (RAM Select Register)  
• Bits 0~5 are used to select registers (address: 00~3F) in the indirect address mode.  
• Bit 6 is used to select bank 0 or bank 1.  
• Bit 7 is a general-purpose read/write bit.  
• See the configuration of the data memory in Fig. 4.  
6. R5 ~ R6 (Port 5 ~ Port 6)  
• R5 and R6 are I/O registers.  
7. R7 ~ R8  
• All of these are 8-bit general-purpose registers.  
This specification is subject to change without prior notice.  
10  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
R0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
R1 (TCC)  
R2 (PC)  
STACK 0  
STACK 1  
STACK 2  
STACK 3  
STACK 4  
STACK 5  
STACK 6  
STACK 7  
R9<5> (IOCS)  
R3 (Status)  
R4 (RSR)  
R5 (Port 5)  
R6 (Port 6)  
R7  
0
1
IOC50  
IOC51 (PWMCON)  
IOC61 (DT1L)  
IOC71 (DT1H)  
IOC81 (PRD1)  
IOC91 (DT2L)  
IOCA1 (DT2H)  
IOC60  
R8  
R9 (ADCON)  
RA (ADDATA)  
RB (TMR1L)  
RC (TMR1H)  
RD (TMR2L)  
RE (TMR2H)  
RF  
IOC90 (GCON)  
IOCA0 (AD-CMPCON)  
IOCB0  
IOCB1 (PRD2)  
IOCC1 (DL1L)  
IOCC0  
IOCD0  
IOCE0  
IOCF0  
IOCD1 (DL1H)  
IOCE1 (DL2L)  
IOCF1 (DL2H)  
10  
11  
16x8  
Common  
Register  
1E  
1F  
PSR7, PSR6  
01  
00  
20  
21  
20  
20  
32x8  
Bank  
Register  
32x8  
Bank  
Register  
(Bank 1)  
(Bank 0)  
3F  
3F  
3F  
Fig. 4 Data Memory Configuration  
This specification is subject to change without prior notice.  
11  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
8. R9 (ADCON: Analog to Digital Control)  
7
-
6
-
5
4
3
2
1
0
IOCS  
ADRUN  
ADPD  
ADIS2  
ADIS1  
ADIS0  
Bit 7:Bit 6 Unemployed, read as ‘0’;  
Bit 5(IOCS): Select the Segment of IO control register.  
1 = Segment 1 ( IOC51~IOCF1 ) selected;  
0 = Segment 0 ( IOC50~IOCF0 ) selected;  
Bit 4 (ADRUN): ADC starts to RUN.  
1 = an A/D conversion is started. This bit can be set by software;  
0 = reset on completion of the conversion. This bit can not be reset though software;  
Bit 3 (ADPD): ADC Power-down mode.  
1 = ADC is operating;  
0 = switch off the resistor reference to save power even while the CPU is operating.  
Bit2:Bit0 (ADIS2:ADIS0): Analog Input Select.  
000 = AN0;  
001 = AN1;  
010 = AN2;  
011 = AN3;  
100 = AN4;  
101 = AN5;  
110 = AN6;  
111 = AN7;  
They can only be changed when the ADIF bit and the ADRUN bit are both LOW.  
9. RA (ADDATA: the converted value of ADC)  
When the A/D conversion is complete, the result is loaded into the ADDATA. The START//END bit is  
cleared, and the ADIF is set.  
10. RB  
An 8-bit general-purpose register.  
11. RC  
A 2-bit, Bit 0and Bit 1 register.  
12. RD  
This specification is subject to change without prior notice.  
12  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
An 8-bit general-purpose register.  
13. RE  
A 2-bit, Bit 0 and Bit 1 register.  
14. RF (Interrupt Status Register)  
7
-
6
5
4
3
2
1
0
CMPIF  
PWM2IF  
PWM1IF  
ADIF  
EXIF  
ICIF  
TCIF  
“1” means interrupt request, and “0” means no interrupt occurs.  
Bit 0 (TCIF) TCC overflow interrupt flag. Set when TCC overflows, reset by software.  
Bit 1 (ICIF) Port 6 input status change interrupt flag. Set when Port 6 input changes, reset by  
software.  
Bit 2 (EXIF) External interrupt flag. Set by falling edge on /INT pin, reset by software.  
Bit 3 (ADIF) Interrupt flag for analog to digital conversion. Set when AD conversion is completed,  
reset by software.  
Bit 4 (PWM1IF) PWM1 (Pulse Width Modulation) interrupt flag. Set when a selected period is  
reached, reset by software.  
Bit 5 (PWM2IF) PWM2 (Pulse Width Modulation) interrupt flag. Set when a selected period is  
reached, reset by software.  
Bit 6 (CMPIF) High-compared interrupt flag. Set when a change occurs in the output of Comparator,  
reset by software.  
Bit 7 Unemployed, read as ‘0’;  
• RF can be cleared by instruction but cannot be set.  
• IOCF0 is the interrupt mask register.  
• Note that to read RF will result to "logic AND" of RF and IOCF0.  
15. R10 ~ R3F  
• All of these are 8-bit general-purpose registers.  
4.2 Special Purpose Registers  
1. A (Accumulator)  
• Internal data transfer, or instruction operand holding  
• It can not be addressed.  
This specification is subject to change without prior notice.  
13  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
2. CONT (Control Register)  
7
6
5
4
3
2
1
0
INTE  
INT  
TS  
TE  
PAB  
PSR2  
PSR1  
PSR0  
Bit 0 (PSR0) ~ Bit 2 (PSR2) TCC/WDT prescaler bits.  
PSR2  
PSR1  
PSR0  
TCC Rate  
1:2  
WDT Rate  
1:1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
Bit 3 (PAB) Prescaler assignment bit.  
0: TCC;  
1: WDT.  
Bit 4 (TE) TCC signal edge  
0: increment if the transition from low to high takes place on the TCC pin;  
1: increment if the transition from high to low takes place on the TCC pin.  
Bit 5 (TS) TCC signal source  
0: internal instruction cycle clock. If P54 is used as I/O pin, TS must be 0.  
1: transition on the TCC pin  
Bit 6 (INT) Interrupt enable flag  
0: masked by DISI or hardware interrupt  
1: enabled by the ENI/RETI instructions  
Bit 7 (INTE) INT signal edge  
0: interrupt occurs at the rising edge on the INT pin  
1: interrupt occurs at the falling edge on the INT pin  
• CONT register is both readable and writable.  
3. IOC50 ~ IOC60 (I/O Port Control Register)  
• "1" puts the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.  
• IOC50 and IOC60 registers are both readable and writable.  
This specification is subject to change without prior notice.  
14  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4. IOC90 (GCON: I/O Configuration & Control of ADC )  
7
6
5
4
3
2
1
0
OP2E  
OP1E  
G22  
G21  
G20  
G12  
G11  
G10  
Bit 7 ( OP2E ) Enable the gain amplifier which input is connected to P64 and output is connected to  
the 8-1 analog switch.  
0 = OP2 is off ( default value ), and bypasses the input signal to the ADC;  
1 = OP2 is on.  
Bit 6 ( OP1E ) Enable the gain amplifier whose input is connected to P60 and output is connected to  
the 8-1 analog switch.  
0 = OP1 is off (default value), and bypasses the input signal to the ADC;  
1 = OP1 is on.  
Bit 5:Bit 3 (G22 and G20): Select the gain of OP2.  
000 = IS x 1 (default value);  
001 = IS x 2;  
010 = IS x 4;  
011 = IS x 8;  
100 = IS x 16;  
101 = IS x 32;  
Legend: IS = the input signal  
Bit 2:Bit 0 (G12 and G10 ): Select the gain of OP1.  
000 = IS x 1 (default value);  
001 = IS x 2;  
010 = IS x 4;  
011 = IS x 8;  
100 = IS x 16;  
101 = IS x 32;  
Legend: S = the input signal  
5. IOCA0 ( AD-CMPCON ):  
7
6
5
4
3
2
1
0
VREFS  
CE  
COE  
IMS2  
IMS1  
IMS0  
CKR1  
CKR0  
Bit 7: The input source of the Vref of the ADC.  
0 = The Vref of the ADC is connected to Vdd (default value), and the P53/VREF pin carries out the  
function of P53;  
This specification is subject to change without prior notice.  
15  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
1 = The Vref of the ADC is connected to P53/VREF.  
Bit 6 (CE): Comparator enable bit  
0 = Comparator is off (default value);  
1 = Comparator is on.  
Bit 5 ( COE ): Set P57 as the output of the comparator  
0 = the comparator acts as an OP if CE=1.  
1 = act as a comparator if CE=1.  
Bit4:Bit2 (IMS2:IMS0):  
Input Mode Select. ADC configuration definition bit. The following Table describes how to define the  
characteristic of each pin of R6.  
Table 3 Description of AD Configuration Control Bits  
IMS2:IMS0  
000  
P60  
A
P61  
D
P62  
D
P63  
D
P64  
D
P65  
D
P66  
D
P67  
D
001  
A
A
D
D
D
D
D
D
010  
A
A
A
D
D
D
D
D
011  
A
A
A
A
D
D
D
D
100  
A
A
A
A
A
D
D
D
101  
A
A
A
A
A
A
D
D
110  
A
A
A
A
A
A
A
D
111  
A
A
A
A
A
A
A
A
Bit 1: Bit 0 (CKR1: CKR0): The prescaler of oscillator clock rate of ADC  
00 = 1: 4 (default value);  
01 = 1: 16;  
10 = 1: 64;  
11 = The oscillator clock source of ADC is from WDT ring oscillator frequency.  
( frequency=256/18ms14.2Khz)  
6. IOCB0 (Pull-down Control Register)  
7
6
5
4
3
2
1
0
/PD7  
/PD6  
/PD5  
/PD4  
/PD3  
/PD2  
/PD1  
/PD0  
Bit 0 (/PD0) Control bit is used to enable the pull-down of the P60 pin.  
0: Enable internal pull-down;  
1: Disable internal pull-down.  
Bit 1 (/PD1) Control bit is used to enable the pull-down of the P61 pin.  
Bit 2 (/PD2) Control bit is used to enable the pull-down of the P62 pin.  
Bit 3 (/PD3) Control bit is used to enable the pull-down of the P63 pin.  
This specification is subject to change without prior notice.  
16  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Bit 4 (/PD4) Control bit is used to enable the pull-down of the P64 pin.  
Bit 5 (/PD5) Control bit is used to enable the pull-down of the P65 pin.  
Bit 6 (/PD6) Control bit is used to enable the pull-down of the P66 pin.  
Bit 7 (/PD7) Control bit is used to enable the pull-down of the P67 pin.  
• IOCB0 register is both readable and writable.  
7. IOCC0 (Open-Drain Control Register)  
7
6
5
4
3
2
1
0
/OD7  
/OD6  
/OD5  
/OD4  
/OD3  
/OD2  
/OD1  
/OD0  
Bit 0 (OD0) Control bit used to enable the open-drain of the P64 pin.  
0: Enable open-drain output  
1: Disable open-drain output  
Bit 1 (OD1) Control bit is used to enable the open-drain of the P65 pin.  
Bit 2 (OD2) Control bit is used to enable the open-drain of the P66 pin.  
Bit 3 (OD3) Control bit is used to enable the open-drain of the P67 pin.  
Bit 4 (OD4) Control bit is used to enable the open-drain of the P51 pin.  
Bit 5 (OD5) Control bit is used to enable the open-drain of the P52 pin.  
Bit 6 (OD6) Control bit is used to enable the open-drain of the P54 pin.  
Bit 7 (OD7) Control bit is used to enable the open-drain of the P57 pin.  
• IOCC0 register is both readable and writable.  
8. IOCD0 (Pull-high Control Register)  
7
6
5
4
-
3
2
1
0
/PH7  
/PH6  
/PH5  
/PH3  
/PH2  
/PH1  
/PH0  
Bit 0 (/PH0) Control bit is used to enable the pull-high of the P60 pin.  
0: Enable internal pull-high;  
1: Disable internal pull-high.  
Bit 1 (/PH1) Control bit is used to enable the pull-high of the P61 pin.  
Bit 2 (/PH2) Control bit is used to enable the pull-high of the P62 pin.  
Bit 3 (/PH3) Control bit is used to enable the pull-high of the P63 pin.  
Bit 4 Not used.  
Bit 5 (/PH5) Control bit is used to enable the pull-high of the P53 pin.  
Bit 6 (/PH6) Control bit is used to enable the pull-high of the P55 pin.  
Bit 7 (/PH7) Control bit is used to enable the pull-high of the P56 pin.  
• IOCD0 register is both readable and writable.  
This specification is subject to change without prior notice.  
17  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
9. IOCE0 (WDT Control Register)  
7
6
5
-
4
-
3
-
2
-
1
-
0
-
WDTE  
EIS  
Bit 7 (WDTE) Control bit is used to enable Watchdog Timer.  
0: Disable WDT;  
1: Enable WDT.  
WDTE is both readable and writable  
Bit 6 (EIS) Control bit is used to define the function of the P50 (/INT) pin.  
0: P50, input pin only;  
1: /INT, external interrupt pin. In this case, the I/O control bit of P50 (bit 0 of IOC50) must be set to  
"1".  
When EIS is "0", the path of /INT is masked. When EIS is "1", the status of /INT pin can also be read  
by way of reading Port 5 (R5). Refer to Fig. 7.  
EIS is both readable and writable.  
Bits 0~5 Not used.  
10. IOCF0 (Interrupt Mask Register)  
7
-
6
5
4
3
2
1
0
CMPIE  
PWM2IE  
PWM1IE  
ADIE  
EXIE  
ICIE  
TCIE  
Bit 0 (TCIE) TCIF interrupt enable bit.  
0: disable TCIF interrupt  
1: enable TCIF interrupt  
Bit 1 (ICIE) ICIF interrupt enable bit.  
0: disable ICIF interrupt  
1: enable ICIF interrupt  
Bit 2 (EXIE) EXIF interrupt enable bit.  
0: disable EXIF interrupt  
1: enable EXIF interrupt  
Bit 3 (ADIE) ADIF interrupt enable bit.  
0: disable ADIF interrupt  
1: enable ADIF interrupt  
Bit 4 (PWM1IE) PWM1IF interrupt enable bit.  
0: disable PWM1 interrupt  
1: enable PWM1 interrupt  
This specification is subject to change without prior notice.  
18  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Bit 5 (PWM2IE) PWM2IF interrupt enable bit.  
0: disable PWM2 interrupt  
1: enable PWM2 interrupt  
Bit 6 (CMPIE) CMPIF interrupt enable bit.  
0: disable CMPIF interrupt  
1: enable CMPIF interrupt  
Bit 7: Unimplemented, read as ‘0’.  
Individual interrupt is enabled by setting its associated control bit in the IOCF0 to "1".  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to Fig.  
11.  
IOCF0 register is both readable and writable.  
11. IOC51 ( PWMCON ):  
7
6
5
4
3
2
1
0
PWM2E  
PWM1E  
T2EN  
T1EN  
T2P1  
T2P0  
T1P1  
T1P0  
Bit 7 (PWM2E): PWM2 enable bit  
0 = PWM2 is off (default value), and its related pin carries out the P52 function.  
1 = PWM2 is on, and its related pin will be set to output automatically.  
Bit 6 (PWM1E): PWM1 enable bit  
0 = PWM1 is off (default value), and its related pin carries out the P51 function;  
1 = PWM1 is on, and its related pin will be set to output automatically.  
Bit 5 (T2EN): TMR2 enable bit  
0 = TMR2 is off (default value).  
1 = TMR2 is on.  
Bit 4 (T1EN): TMR1 enable bit  
0 = TMR1 is off (default value).  
1 = TMR1 is on.  
Bit 3: Bit 2 ( T2P1:T2P0 ): TMR2 clock prescale option bits.  
T2P1  
T2P0  
Prescale  
1:2(Default)  
1:8  
0
0
1
1
0
1
0
1
1:32  
1:64  
This specification is subject to change without prior notice.  
19  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Bit 1 : Bit 0 ( T1P1:T1P0 ): TMR1 clock prescale option bits.  
T1P1  
T1P0  
Prescale  
1:2(Default)  
1:8  
0
0
1
1
0
1
0
1
1:32  
1:64  
12. IOC61 ( DT1L: the Least Significant Byte ( Bit 7 ~ Bit 0) of Duty Cycle of  
PWM1 )  
A specified value keeps the output of PWM1 to stay at high until the value matches with TMR1.  
13. IOC71 ( DT1H: the Most Significant Byte ( Bit 1 ~ Bit 0 ) of Duty Cycle of  
PWM1 )  
7
6
5
4
3
2
-
1
0
CALI1  
SIGN1  
VOF1[2]  
VOF1[1]  
VOF1[0]  
PWM1[9] PWM1[8]  
Bit 7 (CALI1): Calibration enable bit  
0 = Calibration disable;  
1 = Calibration enable.  
Bit 6 (SIGN1): Polarity bit of offset voltage  
0 = Negative voltage;  
1 = Positive voltage.  
Bit 5:Bit 3 (VOF1[2]:VOF1[0]): Offset voltage bits.  
Bit 1:Bit 0 (PWM1[9]:PWM1[8]): The Most Significant Byte of PWM1 Duty Cycle  
A specified value keeps the PWM1 output to stay at high until the value matches with TMR1.  
14. IOC81 ( PRD1: Period of PWM1 ):  
The content of IOC81 is a period (time base) of PWM1. The frequency of PWM1 is the reverse of the  
period.  
15. IOC91 ( DT2L: the Least Significant Byte ( Bit 7 ~ Bit 0 ) of Duty Cycle of  
PWM2 )  
A specified value keeps the of PWM1 output to stay at high until the value matches with TMR2.  
16. IOCA1 ( DT2H: the Most Significant Byte ( Bit 1 ~ Bit 0 ) of Duty Cycle of  
PWM2 )  
7
6
5
4
3
2
-
1
0
CALI2  
SIGN2  
VOF2[2]  
VOF2[1]  
VOF2[0]  
PWM2[9] PWM2[8]  
Bit 7 (CALI2): Calibration enable bit  
This specification is subject to change without prior notice.  
20  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
0 = Calibration disable;  
1 = Calibration enable.  
Bit 6 (SIGN2): Polarity bit of offset voltage  
0 = Negative voltage;  
1 = Positive voltage.  
Bit 5:Bit 3 (VOF2[2]:VOF2[0]): Offset voltage bits  
Bit 1:Bit 0 (PWM2[9]:PWM2[8]): The Most Significant Byte of PWM1 Duty Cycle  
A specified value keeps the PWM2 output to stay at high until the value matches with TMR2.  
17. IOCB1 ( PRD2: Period of PWM2 )  
The content of IOCB1 is a period (time base) of PWM2. The frequency of PWM2 is the reverse of the  
period.  
18. IOCC1 ( DL1L: the Least Significant Byte ( Bit 7 ~ Bit 0 ) of Duty Cycle Latch of  
PWM1 )  
The content of IOCC1 is read-only.  
19. IOCD1 ( DL1H: the Most Significant Byte ( Bit 1 ~ Bit 0 ) of Duty Cycle Latch of  
PWM1 )  
The content of IOCD1 is read-only.  
20. IOCE1 ( DL2L: the Least Significant Byte ( Bit 7 ~ Bit 0) of Duty Cycle Latch of  
PWM2 )  
The content of IOCE1 is read-only.  
21. IOCF1 ( DL2H: the Most Significant Byte ( Bit 1 ~ Bit 0 ) of Duty Cycle Latch of  
PWM2 )  
The content of IOCF1 is read-only.  
This specification is subject to change without prior notice.  
21  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.3 TCC/WDT & Prescaler  
An 8-bit counter is available as prescaler for the TCC or WDT. The prescaler is available for either the  
TCC or WDT only at any given time, and the PAB bit of CONT register is used to determine the  
prescaler assignment. The PSR0~PSR2 bits determine the prescale ratio. The prescaler is cleared  
each time the instruction is written to TCC under TCC mode. The WDT and prescaler, when assigned to  
WDT mode, are cleared by the WDTC or SLEP instructions. Fig. 5 depicts the circuit diagram of  
TCC/WDT.  
• R1(TCC) is an 8-bit timer/counter. The TCC clock source can be internal or external clock input (edge  
selectable from TCC pin). If TCC signal source is from internal clock, TCC will increase by 1 at every  
instruction cycle (without prescaler). Referring to Fig. 5, selection of CLK=Fosc/2 or CLK=Fosc/4  
depends on the CODE Option bit CLKS. CLK=Fosc/2 if CLKS bit is "0", and CLK=Fosc/4 if CLKS bit is  
"1".  
• If TCC signal source is from external clock input, TCC will increase by 1 at every falling edge or rising  
edge of TCC pin.  
• The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after  
the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a  
WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any  
time during the normal mode by software programming. Refer to WDTE bit of IOCE0 register. Without  
presacler, the WDT time-out period is approximately 18 ms1.  
1 NOTE: VDD=5V,Setup time period = 16ms ± 5%.  
VDD=3V,Setup time period = 19ms ± 5%.  
This specification is subject to change without prior notice.  
22  
07.01.2003 (V1.3)  
 
 
EM78P458/459  
OTP ROM  
CLK (Fosc/2 or Fosc/4)  
DATA BUS  
TCC (R1)  
1
0
0
1
M
U
X
M
U
X
TCC  
Pin  
SYNC  
2 cycles  
TCC overflow  
interrupt  
TE  
TS  
PAB  
M
U
X
0
1
8-bit Counter  
8-to-1 MUX  
WDT  
PSR0 ~ PSR2  
PAB  
PAB  
0
1
WDTE  
(in IOCE)  
MUX  
WDT timeout  
Fig. 5 Block Diagram of TCC and WDT  
4.4 I/O Ports  
Port 5, Port 6, and the I/O registers are bi-directional tri-state I/O ports. The function of Pull-high,  
Pull-down, and Open-drain can be set internally by IOCB0, IOCC0, and IOCD0, respectively. Port 6  
features an input status changed interrupt (or wake-up) function. Each I/O pin can be defined as  
"input" or "output" pin by the I/O control register (IOC50 ~ IOC60). The I/O registers and I/O control  
registers are both readable and writable. The I/O interface circuits for Port 5 and Port 6 are shown in  
the following Fig. 6, Fig. 7, and Fig. 8 respectively.  
This specification is subject to change without prior notice.  
23  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
PCRD  
Q
D
D
CLK  
PCWR  
_
Q
C
L
P
R
PORT  
IOD  
Q
CLK  
PDWR  
_
Q
C
L
PDRD  
M
U
X
0
1
NOTE: Pull-down is not shown in the figure.  
Fig. 6 The Ccircuit of I/O Port and I/O Control Register for Port 5  
PCRD  
P
R
Q
D
CLK  
PCWR  
_
Q
C
L
P50, /INT  
PORT  
P
R
Q
D
IOD  
CLK  
_
Q
PDWR  
C
L
Bit 6 of IOCE0  
M
U
X
0
1
P
R
D
Q
CLK  
_
Q
C
L
PDRD  
TI 0  
P
R
D
Q
CLK  
_
Q
C
L
INT  
NOTE: Pull-high (down) and Open-drain are not shown in the figure.  
Fig. 7 The Circuit of I/O Port and I/O Control Register for P50(/INT)  
This specification is subject to change without prior notice.  
24  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
PCRD  
P
R
Q
D
CLK  
PCWR  
_
Q
C
L
P60 ~ P67  
PORT  
P
R
IOD  
Q
D
CLK  
_
Q
PDWR  
C
L
M
U
X
0
1
PDRD  
TI n  
P
R
D
Q
CLK  
_
Q
C
L
NOTE: Pull-high (down) and Open-drain are not shown in the figure.  
Fig. 8 The Circuit of I/O Port and I/O Control Register for P60~P67  
IOCE.1  
P
Q
D
R
CLK  
Interrupt  
_
Q
C
L
RE.1  
ENI Instruction  
P
T10  
T11  
D
Q
R
P
CLK  
Q
D
R
_
Q
C
CLK  
L
_
Q
C
L
T17  
DISI Instruction  
Interrupt  
(Wake-up from SLEEP)  
/SLEP  
Next Instruction  
(Wake-up from SLEEP)  
Fig. 9 Block Diagram of Port 6 with Input Changed Interrupt/Wake-up  
This specification is subject to change without prior notice.  
25  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Table 4 Usage of Port 6 Input Changed Wake-up/Interrupt Function  
Usage of Port 6 Input Status Changed Wake-up/Interrupt  
(I) Wake-up from Port 6 Input Status Change  
(II) Port 6 Input Status Change Interrupt  
1. Read I/O Port 6 (MOV R6,R6)  
2. Execute "ENI"  
(a) Before SLEEP  
1. Disable WDT  
2. Read I/O Port 6 (MOV R6,R6)  
3. Execute "ENI" or "DISI"  
4. Enable interrupt (Set IOCF0.1)  
5. Execute "SLEP" instruction  
(b) After wake-up  
3. Enable interrupt (Set IOCF0.1)  
4. IF Port 6 changed (interrupt)  
Interrupt vector (008H)  
1. IF "ENI" Interrupt vector (008H)  
2. IF "DISI" Next instruction  
4.5 RESET and Wake-up  
1. The function of RESET and Wake-up  
A RESET is initiated by one of the following events-  
(1) Power-on reset  
(2) /RESET pin input "low", or  
(3) WDT time-out (if enabled).  
The device is kept in a RESET condition for a period of approximately 18ms (one oscillator start-up  
timer period) after the reset is detected. Once the RESET occurs, the following functions are  
performed.  
• The oscillator is running, or will be started.  
• The Program Counter (R2) is set to all "0".  
• All I/O port pins are configured as input mode (high-impedance state).  
• The Watchdog Timer and prescaler are cleared.  
• When power is switched on, the upper 3 bits of R3 are cleared.  
• The bits of the CONT register are set to all "1" except for the Bit 6 (INT flag).  
• The bits of the IOCB0 register are set to all "1".  
• The IOCC0 register is cleared.  
• The bits of the IOCD0 register are set to all "1".  
• Bit 7 of the IOCE0 register is set to "1", and Bit 6 is cleared.  
• Bits 0~6 of RF register and bits 0~6 of IOCF0 register are cleared.  
Executing the “SLEP” instruction will assert the sleep (power down) mode. While entering sleep mode,  
the WDT (if enabled) is cleared but keeps on running. The controller can be awakened by-  
This specification is subject to change without prior notice.  
26  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
(1) External reset input on /RESET pin.  
(2) WDT time-out (if enabled).  
(3) Port 6 input status change (if enabled).  
(4) Comparator high.  
The first two cases will cause the EM78P458/459 to reset. The T and P flags of R3 can be used to  
determine the source of the reset (wake-up). Case 3 is considered the continuation of program  
execution and the global interrupt ("ENI" or "DISI" being executed) decides whether or not the  
controller branches to the interrupt vector following wake-up. If ENI is executed before SLEP, the  
instruction will begin to execute from the address 0x8 after wake-up. If DISI is executed before SLEP,  
the execution will restart from the instruction right next to SLEP after wake-up.  
Only one of the Cases 2, to 4 can be enabled before entering into sleep mode. That is,  
[a] if Port 6 Input Status Change Interrupt is enabled before SLEP , WDT must be disabled by  
software. However, the WDT bit in the option register remains enabled. Hence, the  
EM78P458/459 can be awakened only by Case 1 or 3.  
[b] if WDT is enabled before SLEP, Port 6 Input Status Changed Interrupt must be disabled. Hence,  
the EM78P458/459 can be awakened only by Case 1 or 2. Refer to the section on Interrupt for  
further details.  
[c] if Comparator High Interrupt is enabled before SLEP, WDT must be disabled by software.  
However, the WDT bit in the option register remains enabled. Hence, the EM78P458/459 can  
be awakened only by Case 1 or 4.  
If Port 6 Input Status Change Interrupt is used to wake up the EM78P458/459 (as in Case [a] above),  
the following instructions must be executed before SLEP:  
MOV A, @0Bxx000110  
CONTW  
; Select internal TCC clock  
CLR R1  
; Clear TCC and prescaler  
; Select WDT prescaler  
MOV A, @0Bxxxx1110  
CONTW  
WDTC  
; Clear WDT and prescaler  
; Disable WDT  
MOV A, @0B0xxxxxxx  
IOW RE  
MOV R6, R6  
; Read Port 6  
MOV A, @0B00000x1x  
; Enable Port 6 input change interrupt  
This specification is subject to change without prior notice.  
27  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
IOW RF  
ENI (or DISI)  
SLEP  
; Enable (or disable) global interrupt  
; Sleep  
NOP  
Similarly, if the Comparator High Interrupt is used to wake up the EM78P458/459 (as in Case [c]  
above), the following instructions must be executed before SLEP:  
MOV A, @0Bxx000110  
CONTW  
; Select internal TCC clock  
CLR R1  
; Clear TCC and prescaler  
; Select WDT prescaler  
MOV A, @0Bxxxx1110  
CONTW  
WDTC  
; Clear WDT and prescaler  
; Disable WDT  
MOV A, @0B0xxxxxxx  
IOW RE  
MOV A, @0B01xxxxxx  
IOW RF  
; Enable comparator high interrupt  
ENI (or DISI)  
SLEP  
; Enable (or disable) global interrupt  
; Sleep  
NOP  
One problem user must be aware of, is that after waking up from the sleep mode, the WDT function  
will enable automatically. The WDT operation (being enabled or disabled) should be handled  
appropriately by software after waking up from the sleep mode.  
2. The Status of T, and P of STATUS Register  
A RESET condition is initiated by one of the following events:  
(1) A power-on condition,  
(2) A high-low-high pulse on /RESET pin, or  
(3) Watchdog Timer time-out.  
The values of T and P, as listed in Table 5 below, are used to check how the processor wakes up.  
Table 6 shows the events, which may affect the status of T and P.  
This specification is subject to change without prior notice.  
28  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Table 5 The Values of RST, T, and P after RESET  
Reset Type  
T
P
Power-on  
1
*P  
1
0
0
1
*P  
0
*P  
0
/RESET during Operating mode  
/RESET wake-up during SLEEP mode  
WDT during Operating mode  
WDT wake-up during SLEEP mode  
Wake-up on pin change during SLEEP mode  
1
0
*P: Previous status before reset  
Table 6 The Status of RST, T and P being Affected by Events  
Event  
T
P
Power-on  
1
1
0
1
1
1
1
*P  
0
WDTC instruction  
WDT time-out  
SLEP instruction  
Wake-up on pin changed during SLEEP mode  
0
*P: Previous value before reset  
VDD  
D
Q
CLK  
Oscillator  
CLK  
CLR  
Power-On Reset  
Voltage Detector  
W
WDT Timeout  
Reset  
Setup time  
WDT  
/RESET  
Fig. 10 Block Diagram of Reset of Controller  
This specification is subject to change without prior notice.  
29  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.6 Interrupt  
The EM78P458/459 has six interrupts as listed below:  
(1) TCC overflow interrupt  
(2) Port 6 Input Status Change Interrupt  
(3) External interrupt [(P50, /INT) pin].  
(4) Analog to Digital conversion completed.  
(5) When TMR1/TMR2 matches with PRD1/PRD2 respectively in PWM.  
(6) When the comparators output change.  
Before the Port 6 Input Status Change Interrupt is enabled, reading Port 6 (e.g. "MOV R6,R6") is  
necessary. Each Port 6 pin will have this feature if its status changes. Any pin configured as output or  
P50 pin configured as /INT, is excluded from this function. Port 6 Input Status Change Interrupt will  
wake up the EM78P458/459 from the sleep mode if it is enabled prior to going into the sleep mode by  
executing SLEP. When the controller is wake-up, it will continue to execute the succeeding program if  
the global interrupt is disabled, or branches out to the interrupt vector 008H if the global interrupt is  
enabled.  
RF, the interrupt status register that records the interrupt requests in the relative flags/bits. IOCF0 is  
an interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the  
DISI instruction. When one of the interrupts (when enabled) occurs, the next instruction will be  
fetched from address 008H. Once in the interrupt service routine, the source of an interrupt can be  
determined by polling the flag bits in RF. The interrupt flag bit must be cleared by instructions before  
leaving the interrupt service routine to avoid recursive interrupts.  
The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the status of its  
mask bit or the execution of ENI. Note that the outcome of RF will be the logic AND of RF and IOCF0  
(refer to Fig. 11). The RETI instruction ends the interrupt routine and enables the global interrupt (the  
execution of ENI).  
When an interrupt is generated by the INT instruction (when enabled), the next instruction will be  
fetched from address 001H.  
This specification is subject to change without prior notice.  
30  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Fig. 11 Interrupt Input Circuit  
4.7 Analog-To-Digital Converter (ADC)  
The analog-to-digital circuitry consists of an 8-bit analog multiplexer, three control registers  
(ADCON/R9, AD-CMP-CON/IOCA0, GCON/IOC90), one data register (ADDATA/RA) and an ADC  
with 8-bit resolution. The functional block diagram of the ADC is shown in Fig. 12. The analog  
reference voltage (Vref) and analog ground are connected via separate input pins.  
The ADC module utilizes successive approximation to convert the unknown analog signal into a  
digital value. The result is fed to the ADDATA. Input channels are selected by the analog input  
multiplexer via the ADCON register Bits ADIS0, ADIS1, and ADIS2.  
ADC8  
ADC7  
ADC6  
ADC5  
Vref  
+
-
Power-Down  
ADC  
OP2  
Start to Convert  
( successive approximation )  
ADC4  
ADC3  
ADC2  
ADC1  
Fsco  
4-1  
MUX  
+
-
OP1  
3
Internal  
RC  
4
3
2
5
4
2
1
0
2
1
0
1
0
3
7
6
5
4
3
2
1
0
4
3
AD-CMPCON  
ADCON AD-CMPCON  
RF  
ADDATA  
ADCON  
GCON  
DATA BUS  
Fig. 12 The Functional Block Diagram of Analog-to-Digital Conversion  
This specification is subject to change without prior notice.  
31  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
1. ADC Control Register (ADCON/R9, AD-CMP-CON/IOCA0, GCON/IOC90)  
1.1 ADCON/R9  
The ADCON register controls the operation of the A/D conversion and decides which pin should  
be currently active.  
BIT  
7
-
0
6
-
0
5
IOCS  
0
4
3
2
ADIS2  
0
1
0
SYMBOL  
*Init_Value  
ADRUN ADPD  
ADIS1 ADIS0  
0
0
0
0
*Init_Value: Initial value at power on reset  
ADRUN (bit 4): ADC starts to RUN.  
1 = an A/D conversion is started. This bit can be set by software.  
0 = reset on completion of the conversion. This bit can not be reset in software.  
ADPD (bit 3): ADC Power-down Mode.  
1 = ADC is operating;  
0 = switch off the resistor reference to save power even when the CPU is operating.  
ADIS2~ADIS0 (bit 2~0): Analog Input Select.  
000 = AN0;  
001 = AN1;  
010 = AN2;  
011 = AN3;  
100 = AN4;  
101 = AN5;  
110 = AN6;  
111 = AN7;  
Change occurs only when the ADIF bit and the ADRUN bit are both LOW.  
1.2 AD-CMP-CON/IOCA0  
The AD-CMP-CON register defines the pins of Port 6 as analog inputs or as digital I/O,  
individually.  
BIT  
7
VREFS  
0
6
CE  
0
5
COE  
0
4
IMS2  
0
3
IMS1  
0
2
IMS0  
0
1
0
SYMBOL  
*Init_Value  
CKR1 CKR0  
0
0
*Init_Value: Initial value at power on reset  
VREFS (Bit 7): The input source of the Vref of the ADC.  
This specification is subject to change without prior notice.  
32  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
0 = The Vref of the ADC is connected to Vdd (default value), and the P53/VREF pin carries out  
the function of P53;  
1 = The Vref of the ADC is connected to P53/VREF.  
CE (Bit 6): Control bit used to enable comparator.  
0 = Disable comparator  
1 = Enable comparator  
COE (Bit 5): Set P57 as the output of the comparator  
0 = the comparator acts as an OP if CE=1.  
1 = act as a comparator if CE=1.  
IMS2~IMS0 (Bit 4 ~ Bit 2): ADC configuration definition bit.  
CKR1 and CKR0 (Bit 1 and Bit 0): The conversion time select.  
00 = Fosc/4;  
01 = Fosc/16;  
10 = Fsco/64;  
11 = The oscillator clock source of ADC is from WDT ring oscillator frequency.  
( frequency=256/18ms14.2Khz)  
1.3 GCON/IOC90  
As shown in Fig. 12, OP1 and OP2, the gain amplifiers, are located in the middle of the analog  
input pins (ADC1 and ADC5) and the 8-1analog switch. The GCON register controls the gains.  
Table 7 Table 7 Shows the Gains and the Operating Range of ADC.  
BIT  
7
OP2E  
0
6
OP1E  
0
5
G22  
0
4
G21  
0
3
G20  
0
2
G12  
0
1
G11  
0
0
G10  
0
SYMBOL  
*Init_Value  
Table 8 The Gains and the Operating Range of ADC  
G10:G12/G20:G22  
Gain  
1
2
4
8
Range of Operating Voltage  
0 ~ Vref  
000  
001  
010  
011  
100  
101  
0 ~ (1/2)Vref  
0 ~ (1/4)Vref  
0 ~ (1/8)Vref  
0 ~ (1/16)Vref  
0 ~ (1/32)Vref  
16  
32  
<Note> Vref can not be less than 3 volts.  
2. ADC Data Register (ADDATA/RA)  
This specification is subject to change without prior notice.  
33  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
When the A/D conversion is complete, the result is loaded to the ADDATA. The START/END bit is  
clear, and the ADIF is set.  
3. A/D Sampling Time  
The accuracy, linearity, and speed of the successive approximation A/D converter are dependent on  
the properties of the ADC and the comparator. The source impedance and the internal sampling  
impedance directly affect the time required to charge the sample holding capacitor. The application  
program controls the length of the sample time to meet the specified accuracy. Generally speaking,  
the program should wait for 1 μs for each Kof the analog source impedance and at least 1 μs for  
the low-impedance source. After the analog input channel is selected, this acquisition time must be  
done before the conversion can be started.  
4. A/D Conversion Time  
CKR0 and CKR1 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU  
to run at the maximum frequency without sacrificing the accuracy of A/D conversion. For the  
EM78P458/459, the conversion time per bit is about 4μs. Table 8 shows the relationship between  
Tct and the maximum operating frequencies.  
Table 9 Tct vs. the Maximum Operation Frequency  
CKR0:CKR1  
Operation Mode  
Fsco/4  
Max. operation frequency  
00  
01  
10  
11  
1 MHz  
4 MHz  
16MHz  
-
Fsco/16  
Fsco/64  
Internal RC  
5. A/D Operation During Sleep Mode  
In order to reduce power consumption, the A/D conversion remains operational during sleep mode,  
and is obligated to implement the internal RC clock source mode. As the SLEP instruction is executed,  
all the operations of the MCU will stop except for the A/D conversion. The RUN bit will be cleared and  
the result will be fed to the ADDATA when the conversion is completed. If the ADIE is enabled, the  
device will wake up. Otherwise, the A/D conversion will be shut off, no matter what the status of  
ADPD bit is.  
6. Programming Steps/Considerations  
1. Programming steps  
Follow these steps to obtain data from the ADC:  
This specification is subject to change without prior notice.  
34  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
(1) Write to the three bits (IMS2:IMS0) on the AD-CMP-CON1 register to define the characteristics  
of R6: Digital I/O, analog channels, and voltage reference pin;  
(2) Write to the ADCON register to configure AD module:  
(a) Select A/D input channel ( ADAS2:ADAS0 );  
(b) Select the proper gains by writing to the GCON register ( optional );  
(c) Define A/D conversion clock rate ( CKR1:CKR0 );  
(d) Set the ADPD bit to 1 to begin sampling.  
(3) Put “ENI” instruction, if the interrupt function is employed.  
(4) Set the ADRUN bit to 1.  
(5) Wait for either the interrupt flag to be set or the ADC interrupt to occur.  
(6) Read ADDATA, the conversion data register.  
(7) Clear the interrupt flag bit (ADIF).  
(8) For next conversion, go to Step 1 or Step 2 as required. At least 2 Tct is required before next  
acquisition starts.  
<Note>: To obtain an accurate value, it is necessary to avoid any data transition on I/O pins during  
AD conversion.  
2. The Demonstration Programs  
; To define the general registers  
R_0 == 0  
; Indirect addressing register  
; Status register  
PSW == 3  
PORT5 == 5  
PORT6 == 6  
R_F== 0XF  
; Interrupt status register  
; To define the control register  
IOC50 == 0X5  
; Control Register of Port 5  
; Control Register of Port 6  
; Interrupt Control Register  
IOC60 == 0X6  
C_INT== 0XF  
This specification is subject to change without prior notice.  
35  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
;ADC Control Registers  
ADDATA == 0xA  
; The contents are the results of ADC  
ADCON R== 0x9  
ADCONC== 0xA  
GCON == 0x9  
; 7  
6
-
5
4
3
2
1
0
; -  
IOCS ADRUN ADPD ADIS2 ADIS1 ADIS0  
; 7  
6
5
4
3
2
1
0
; VREFS  
; 7  
X
X
IMS2 IMS1 IMS0 CKR1 CKR0  
6
5
4
3
2
1
0
; OPE2 OPE1 G22 G21 G20 G12 G11 G10  
;To define bits  
;In ADCONR  
ADRUN == 0x4  
ADPD == 0x3  
; ADC is executed as the bit is set  
; Power Mode of ADC  
ORG 0  
; Initial address  
;
JMP INITIAL  
ORG 0x08  
; Interrupt vector  
(User program)  
CLR R_F  
; To clear the ADCIF bit  
BS ADCONR, ADRUN  
RETI  
; To start to execute the next AD conversion if necessary  
INITIAL:  
MOV A, @0BXXXX1XXX  
IOW C_INT  
; Enable the interrupt function of ADC, “X” by application  
; Interrupt disabled:<6>  
MOV A, @0xXX  
This specification is subject to change without prior notice.  
36  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
CONTW  
MOV A, @0B00000000  
IOW ADCONC  
; To employ Vdd as the reference voltage, to define P60 as  
; an analog input and set clock rate at fosc/4  
En_ADC:  
MOV A, @0BXXXXXXX1  
IOW PORT6  
; To define P60 as an input pin, and the others are dependent  
; on applications  
MOV A, @0B01000101  
IOW GCON  
; To enable the OP1, and set the gain as 32  
BS ADCONR, ADPD  
ENI  
; To disable the power-down mode of ADC  
; Enable the interrupt function  
; Start to run the ADC  
BS ADCONR, ADRUN  
; If the interrupt function is employed, the following three lines may be ignored  
POLLING:  
JBC ADCONR, ADRUN  
; To check the ADRUN bit continuously;  
JMP POLLING  
; ADRUN bit will be reset as the AD conversion is completed  
(User program)  
:
:
:
4.8 Dual Sets of PWM ( Pulse Width Modulation )  
1. Overview  
In PWM mode, both PWM1 and PWM2 pins produce up to a 10-bit resolution PWM output (see. Fig.  
13 for the functional block diagram). A PWM output has a period and a duty cycle, and it keeps the  
output in high. The baud rate of the PWM is the inverse of the period. Fig. 14 depicts the relationships  
between a period and a duty cycle.  
This specification is subject to change without prior notice.  
37  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
latch  
To PWM1IF  
DL1H + DL1L  
Comparator  
DT1H  
+
DT1L  
Fosc  
Duty Cycle  
Match  
1:2  
PWM1  
1:8  
MUX  
1:32  
1:64  
R
S
Q
TMR1H + TMR1L  
reset  
IOC51  
Comparator  
T1P0 T1P1 T1EN  
Period  
Match  
PRD1  
Data Bus  
Data Bus  
latch  
To PWM2IF  
DL2H + DL2L  
DT2H  
+
DT2L  
Duty Cycle  
Match  
T2P0 T2P1 T2EN  
Comparator  
PWM2  
Fosc  
R
S
Q
TMR2H + TMR2L  
1:2  
reset  
1:8  
MUX  
1:32  
1:64  
IOC51  
Comparator  
Period  
Match  
PRD2  
Fig. 13 The Functional Block Diagram of the Dual PWMs  
Period  
Duty Cycle  
PRD1 = TMR1  
DT1 = TMR1  
Fig. 14 The Output Timing of the PWM  
2. Increment Timer Counter ( TMRX: TMR1H/TWR1L or TMR2H/TWR2L )  
TMRX are ten-bit clock counters with programmable prescalers. They are designed for the PWM  
module as baud rate clock generators. TMRX can be read, written, and cleared at any reset  
conditions. If employed, they can be turned down for power saving by setting T1EN bit  
[PWMCON<4>] or T2EN bit [PWMCON<5>] to 0.  
This specification is subject to change without prior notice.  
38  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
3. PWM Period ( PRDX : PRD1 or PRD2 )  
The PWM period is defined by writing to the PRDX register. When TMRX is equal to PRDX, the  
following events occur on the next increment cycle:  
• TMRX is cleared.  
• The PWMX pin is set to 1.  
• The PWM duty cycle is latched from DT1/DT2 to DTL1/DTL2.  
< Note > The PWM output will not be set, if the duty cycle is 0;  
• The PWMXIF pin is set to 1.  
The following formula describes how to calculate the PWM period:  
PERIOD = (PRDX + 1) * 4 * (1/Fosc) * (TMRX prescale value )  
4. PWM Duty Cycle ( DTX: DT1H/ DT1L and DT2H/ DT2L; DTL: DL1H/DL1L and  
DL2H/DL2L )  
The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while  
TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded at any  
time. However, it cannot be latched into DTL until the current value of DLX is equal to TMRX.  
The following formula describes how to calculate the PWM duty cycle:  
Duty Cycle = (DTX) * (1/Fosc) * (TMRX prescale value )  
5. Comparator X  
To change the output status while the match occurs, the TMRXIF flag will be set at the same time.  
6. PWM Programming Procedures/Steps  
(1) Load PRDX with the PWM period..  
(2) Load DTX with the PWM Duty Cycle.  
(3) Enable interrupt function by writing IOCF0, if required.  
(4) Set PWMX pin to be output by writing a desired value to IOC51.  
(5) Load a desired value to IOC51 with TMRX prescaler value and enable both PWMX and TMRX.  
This specification is subject to change without prior notice.  
39  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.9 Timer  
1. Overview  
Timer1 (TMR1) and Timer2 (TMR2) (TMRX) are 10-bit clock counters with programmable prescalers,  
respectively. They are designed for the PWM module as baud rate clock generators. TMRX can be  
read, written, and cleared at any reset conditions.  
2. Function description  
Fig. 15 shows TMRX block diagram. Each signal and block are described as follows:  
Fosc  
1:2  
To PWM1IF  
1:8  
1:32  
1:64  
MUX  
reset  
Period  
Match  
TMR1X  
Comparator  
T1P0 T1P1  
T1EN  
PRD1  
PRD2  
Data Bus  
Data Bus  
T2P0 T2P1 T2EN  
Comparator  
reset  
Period  
Match  
Fosc  
1:2  
TMR2X  
1:8  
1:32  
1:64  
MUX  
To PWM2IF  
*TMR1X = TMR1H + TMR1L;  
*TMR2X = TMR2H +TMR2L  
Fig. 15 TMRX Block Diagram  
Fosc: Input clock.  
Prescaler ( T1P0 and T1P1/T2P1 and T2P0 ): Options of 1:2, 1:8, 1:32, and 1:64 are defined by  
TMRX. It is cleared when any type of reset occurs.  
TMR1X and TMR2X (TMR1H/TWR1L and TMR2H/TMR2L ):  
Timer  
X
register; TMRX is  
increased until it matches with PRDX, and then is reset to 0. TMRX cannot be read.  
PRDX ( PRD1 and PRD2 ): PWM period register.  
This specification is subject to change without prior notice.  
40  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
ComparatorX ( Comparator 1 and Comparator 2 ): To reset TMRX while a match occurs and the  
TMRXIF flag is set at the same time.  
3. Programming the Related Registers  
When defining TMRX, refer to the related registers of its operation as shown in Table 9.It must be  
noted that the PWMX bits must be disabled if their related TMRXs are employed. That is, bit 7 and bit  
6 of the PWMCON register must be set to ‘0’.  
Table 10 Related Control Registers of TMR1 and TMR2  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2  
Bit 1 Bit 0  
IOC51 PWMCON/IOC51 PWM2E PWM1E T2EN T1EN T2P1 T2P0 T1P1 T1P0  
4. Timer programming procedures/steps  
(1) Load PRDX with the TIMER period.  
(2) Enable interrupt function by writing IOCF0, if required  
(3) Load a desired value to PWMCON with the TMRX prescaler value and enable both TMRX and  
disable PWMX.  
4.10 Comparator  
EM78P458/459 has one comparator, which has two analog inputs and one output. The comparator  
can be employed to wake up from the sleep mode. Fig. 16 shows the circuit of the comparator.  
Cin-  
-
CO  
CMP  
Cin+  
+
Fig. 16 Comparator Operating Mode  
1. External Reference Signal  
The analog signal that is presented at Cin- compares to the signal at Cin+, and the digital output (CO)  
of the comparator is adjusted accordingly.  
• The reference signal must be between Vss and Vdd.  
• The reference voltage can be applied to either pi of comparator.  
• Threshold detector applications may be of the same reference.  
• The comparator can operate from the same or different reference source.  
2. Comparator Outputs  
This specification is subject to change without prior notice.  
41  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
• The compared result is stored in the CMPOUT of R3.  
• The comparator outputs is output to P57 by programming bit5<COE> of the AD-CMPCON register  
to 1.  
• P57 must be defined as an output if implemented as the comparator output.  
• Fig. 17 shows the comparator output block diagram.  
To C0  
From OP I/O  
CMRD  
EN  
EN  
Q
D
Q
D
To CMPOUT  
RESET  
To CPIF  
CMRD  
From other  
comparator  
Fig. 17 The Output Configuration of a Comparator  
3. Using as An Operation Amplifier  
The comparator can be used as an operation amplifier if a feedback resistor is connected from the  
input to the output externally. In this case, the Schmitt trigger can be disabled for power saving by  
setting CE to 1 and COE to 0.  
4. Interrupt  
• CMPIE (IOCF0.6) must be enabled.  
• Interrupt occurs at the rising edge of the comparator output pin.  
• The actual change on the pin can be determined by reading the Bit CMPOUT, R3<7>.  
• CMPIF (RF.6), the comparator interrupt flag, can only be cleared by software.  
5. Wake-up from SLEEP Mode  
This specification is subject to change without prior notice.  
42  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
• If enabled, the comparator remains active and the interrupt remains functional, even under SLEEP  
mode.  
• If a mismatch occurs, the interrupt will wake up the device from SLEEP mode.  
• The power consumption should be taken into consideration for the benefit of energy conservation.  
• If the function is unemployed during SLEEP mode, turn off comparator before entering into sleep  
mode.  
4.11 The Initialized Values after Reset  
Table 11 The Summary of the Initialized Values for Registers  
Address  
Name  
Reset Type  
Bit Name  
Bit 7  
Bit 6  
C56  
1
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C57  
C55  
C54  
C53  
C52  
C51  
C50  
Power-on  
1
1
1
1
1
1
1
N/A  
IOC50  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
C67  
P
C66  
1
P
C65  
P
C64  
P
C63  
P
C62  
P
C61  
P
C60  
Power-on  
1
1
1
1
1
1
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IOC60  
IOCB0  
IOCC0  
IOCD0  
IOCE0  
IOCF0  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
/PD7  
P
/PD6  
1
P
*/PD5  
P
*/PD4  
P
/PD3  
P
/PD2  
P
/PD1  
P
/PD0  
Power-on  
1
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
P
OD7  
P
OD6  
1
P
OD5  
1
P
OD4  
1
P
OD3  
P
OD2  
P
OD1  
P
OD0  
Power-on  
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
/PH7  
P
/PH6  
1
P
/PH5  
1
P
/PH4  
1
P
/PH3  
P
/PH2  
P
/PH1  
P
/PH0  
Power-on  
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
P
EIS  
0
P
X
P
X
P
X
P
X
P
X
P
X
WDTE  
Power-on  
1
1
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
0
1
1
1
1
1
1
P
X
P
1
1
1
1
1
ICIE  
1
CMPIE PMW2IE PWM1IE  
ADIE  
EXIE  
TCIE  
Power-on  
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
0
P
OP1E  
P
G22  
P
G21  
P
G20  
P
G12  
P
G11  
P
G10  
OP2E  
Power-on  
0
0
0
0
0
0
0
0
0
IOC90  
(GCON)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
P
P
CE  
0
P
COE  
P
IMS2  
P
IMS1  
P
IMS0  
P
CKR1  
P
CKR0  
VREFS  
IOCA0  
(AD-CMP  
CON)  
Power-on  
0
0
P
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
P
P
T2EN  
P
T1EN  
P
T2P1  
0
P
T2P0  
0
P
T1P1  
0
P
T1P0  
0
PWM2E PWM2E  
Power-on  
0
0
0
0
0
0
0
0
IOC51  
(PWMCON)  
N/A  
N/A  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
P
Bit7  
0
P
Bit6  
0
P
Bit5  
0
P
Bit4  
0
P
Bit3  
0
P
Bit2  
0
P
Bit1  
0
P
Bit0  
0
IOC61  
(DT1L)  
Power-on  
/RESET and WDT  
0
0
0
0
0
0
0
0
This specification is subject to change without prior notice.  
43  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Address  
N/A  
Name  
Reset Type  
Wake-up from Pin Changed  
Bit Name  
Bit 7  
Bit 6  
Bit 5  
P
Bit 4  
P
Bit 3  
P
Bit 2  
P
X
0
Bit 1  
P
P
P
Bit1  
0
P
Bit0  
0
CALI1  
SIGN1  
VOF1[2] VOF1[1] VOF1[0]  
Power-on  
0
1
1
1
0
0
0
0
IOC71  
(DT1H)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
1
0
0
0
P
-
P
-
P
-
P
-
P
-
0
-
P
-
P
-
Power-on  
0
0
0
0
0
0
0
0
IOC81  
(PRD1)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x00  
0x01  
0x02  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
Bit7  
P
Bit6  
P
Bit5  
0
P
Bit4  
0
P
Bit3  
0
P
Bit2  
0
P
Bit1  
0
P
Bit0  
0
Power-on  
0
0
IOC91  
(DT2L)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
P
P
P
P
P
X
0
P
Bit1  
0
P
Bit0  
0
CALI2  
SIGN2  
VOF2[2] VOF2[1] VOF2[0]  
Power-on  
0
0
1
1
1
1
0
0
0
0
IOCA1  
(DT2H)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
P
-
P
-
P
-
P
-
P
-
0
-
P
-
P
-
Power-on  
0
0
0
0
0
0
0
0
IOCB1  
(PRD2)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
Bit7  
0
P
Bit6  
0
P
Bit5  
0
P
Bit4  
0
P
Bit3  
0
P
Bit2  
0
P
Bit1  
0
P
Bit0  
0
Power-on  
IOCC1  
(DL1L)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
X
0
P
X
0
P
X
0
P
X
0
P
X
0
P
X
0
P
Bit1  
0
P
Bit0  
0
Power-on  
IOCD1  
(DL1H)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
0
Bit7  
0
0
Bit6  
0
0
Bit5  
0
0
Bit4  
0
0
Bit3  
0
0
Bit2  
0
P
Bit1  
0
P
Bit0  
0
Power-on  
IOCE1  
(DL2L)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
X
0
P
X
0
P
X
0
P
X
0
P
X
0
P
X
0
P
Bit1  
0
P
Bit0  
0
Power-on  
IOCF1  
(DL2H)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
0
0
INT  
0
0
TS  
1
0
TE  
1
0
PAB  
1
0
P
PSR1  
1
P
PSR0  
1
INTE  
1
PSR2  
1
Power-on  
CONT  
R0(IAR)  
R1(TCC)  
R2(PC)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
0
1
1
1
1
1
1
P
-
P
-
P
-
P
-
P
-
P
-
P
-
P
-
Power-on  
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
U
P
U
P
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
P
-
P
-
Power-on  
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
-
P
-
P
-
P
-
P
-
P
-
P
-
P
-
Power-on  
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
Jump to address 0x08 or continue to execute next instruction  
PS1  
0
GP2  
0
PS0  
0
T
1
t
P
1
t
Z
U
P
P
-
DC  
U
P
C
U
P
P
-
Power-on  
0x03  
0x04  
R3(SR)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
P
BS7  
0
P
BS6  
0
P
-
t
-
t
-
P
-
R4(RSR)  
Power-on  
U
P
U
P
U
P
U
P
U
P
U
P
/RESET and WDT  
0
0
This specification is subject to change without prior notice.  
44  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Address  
0x05  
Name  
P5  
Reset Type  
Wake-up from Pin Changed  
Bit Name  
Bit 7  
P
P57  
1
Bit 6  
P
P56  
1
Bit 5  
P
P55  
1
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
P
P54  
P
P53  
P
P52  
P
P51  
P
P50  
Power-on  
1
1
1
1
1
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
P67  
1
P
P66  
1
P
P65  
1
P
P64  
P
P63  
P
P62  
P
P61  
P
P60  
Power-on  
1
1
1
1
1
0x06  
0x7~0x8  
0x9  
P6  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
1
1
1
1
1
1
1
1
P
-
P
-
P
-
P
-
P
-
P
-
P
-
P
-
Power-on  
U
P
P
X
0
U
P
U
U
U
U
U
U
R7~R8  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
P
P
P
P
P
P
P
X
P
IOCS  
0
P
P
P
P
P
ADRUN  
ADPD  
ADAS2  
ADAS1  
ADAS0  
Power-on  
0
0
0
0
0
0
0
0
0
0
0
R9  
(ADCON)  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
P
-
P
-
P
-
P
-
P
-
P
-
P
-
P
-
Power-on  
0
0
0
0
0
0
0
0
RA  
(ADDDATA)  
0xA  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
Bit7  
0
P
Bit6  
0
P
Bit5  
0
P
Bit4  
0
P
Bit3  
0
P
Bit2  
0
P
Bit1  
0
P
Bit0  
0
Power-on  
RB  
(TMR1L)  
0xB  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
X
0
P
X
P
X
P
X
0
P
X
P
X
P
Bit1  
0
P
Bit0  
0
Power-on  
0
0
0
0
RC  
(TMR1H)  
0xC  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
0
Bit7  
0
0
Bit6  
0
0
Bit5  
0
0
Bit4  
0
0
Bit3  
0
0
Bit2  
0
P
Bit1  
0
P
Bit0  
0
Power-on  
RD  
(TMR2L)  
0xD  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
P
X
0
P
X
P
X
P
X
0
P
X
P
X
P
Bit1  
0
P
Bit0  
0
Power-on  
0
0
0
0
RE  
(TMR2H)  
0xE  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
0
EXIF  
0
P
ICIF  
0
P
TCIF  
0
CMPIF PWM2IF PWM1IF  
ADIF  
0
Power-on  
0
0
P
-
0
0
P
-
0
0
P
-
RF  
(ISR)  
0xF  
/RESET and WDT  
Wake-up from Pin Changed  
Bit Name  
0
0
0
0
0
0
-
P
-
P
-
P
-
P
-
Power-on  
U
P
P
U
P
P
U
P
P
U
P
P
U
P
U
P
U
U
0x10~0x3F  
R10~R3F  
/RESET and WDT  
Wake-up from Pin Changed  
P
P
P
P
P
P
X: not used. U: unknown or don’t care.  
t: check Table 5  
P: previous value before reset.  
4.12 Oscillator  
1. Oscillator Modes  
The EM78P458 and EM78P459 can be operated in four different oscillator modes, such as High  
XTAL oscillator mode (HXT), Low XTAL oscillator mode (LXT), External RC oscillator mode (ERC),  
and RC oscillator mode with Internal capacitor (IC). Users can select one of them by programming the  
This specification is subject to change without prior notice.  
45  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
MASK Option. The up-limited operation frequency of crystal/resonator on the different VDDs is listed  
in Table 11  
Table 12 The Summary of Maximum Operating Speeds  
Conditions  
VDD  
2.3  
3.0  
Fxt max.(MHz)  
4
8
Two clocks  
5.0  
20  
2. Crystal Oscillator/Ceramic Resonators (XTAL)  
EM78P458/459 can be driven by an external clock signal through the OSCI pin as shown in Fig. 18  
below.  
Ext.  
Clock  
OSCI  
EM78P458  
EM78P459  
OSCO  
Fig. 18 Circuit for External Clock Input  
In the most applications, pin OSCI and pin OSCO can be connected with a crystal or ceramic  
resonator to generate oscillation. Fig. 19 depicts such circuit. The same applies to the HXT mode and  
the LXT mode. Table 12 provided the recommended values of C1 and C2. Since each resonator has  
its own attribute, user should refer to their specifications for appropriate values of C1 and C2. RS, a  
serial resistor, may be necessary for AT strip cut crystal or low frequency mode.  
C1  
OSCI  
EM78P458  
EM78P459  
XTAL  
OSCO  
C2  
RS  
Fig. 19 Circuit for Crystal/Resonator  
This specification is subject to change without prior notice.  
46  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
Table 13 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonators  
Oscillator Type  
Frequency Mode  
Frequency  
455 kHz  
2.0 MHz  
4.0 MHz  
32.768kHz  
100KHz  
200KHz  
455KHz  
1.0MHz  
2.0MHz  
4.0MHz  
C1(pF)  
100~150  
20~40  
10~30  
25  
25  
25  
20~40  
15~30  
15  
C2(pF)  
100~150  
20~40  
10~30  
15  
25  
25  
20~150  
15~30  
15  
Ceramic  
Resonators  
HXT  
LXT  
HXT  
Crystal Oscillator  
15  
15  
330  
330  
OSCI  
7404  
7404  
7404  
C
EM78P458  
EM78P459  
XTAL  
Fig. 20 Circuit for Crystal/Resonator-Series Mode  
4.7K  
10K  
7404  
Vdd  
OSCI  
EM78P458  
EM78P459  
7404  
10K  
XTAL  
C1 C2  
10K  
Fig. 21 Circuit for Crystal/Resonator-Parallel Mode  
This specification is subject to change without prior notice.  
47  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
3. External RC Oscillator Mode  
For some applications that do not require precise timing calculation, the RC oscillator (Fig. 22) could  
offer users with an effective cost savings. Nevertheless, it should be noted that the frequency of the  
RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor(Cext),  
and even by the operation temperature. Moreover, the frequency also changes slightly from one chip  
to another due to the manufacturing process variation.  
In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF,  
and that the value of Rext should not be greater than 1M ohm. If they cannot be kept in this range, the  
frequency can be affected easily by noise, humidity, and leakage.  
The smaller the Rext in the RC oscillator, the faster its frequency will be. On the contrary, for very low  
Rext values, for instance, 1 K, the oscillator becomes unstable because the NMOS cannot  
discharge the current of the capacitance correctly.  
Based on the above reasons, it must be kept in mind that all supply voltage, the operation  
temperature, the components of the RC oscillator, the package types, and the way the PCB is layout,  
have certain effect on the system frequency.  
Vcc  
Rext  
OSCI  
Cext  
EM78P458  
EM78P459  
Fig. 22 Circuit for External RC Oscillator Mode  
Table 14 RC Oscillator Frequencies  
Cext  
Rext  
Average Fosc 5V,25°C  
3.57 MHz  
Average Fosc 3V,25°C  
2.94 MHz  
3.3k  
5.1k  
10k  
2.63MHz  
1.92 MHz  
20 pF  
1.30 MHz  
1.22 MHz  
100k  
150 KHz  
153 KHz  
This specification is subject to change without prior notice.  
48  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
3.3k  
5.1k  
10k  
1.43 MHz  
980 KHz  
520 KHz  
57 KHz  
1.35 MHz  
877 KHz  
465 KHz  
54 KHz  
100 pF  
300 pF  
100k  
3.3k  
5.1k  
10k  
510 KHz  
340 KHz  
175 KHz  
19 KHz  
470 KHz  
320 KHz  
170 KHz  
19 KHz  
100k  
<Note> 1. Measured on DIP packages.  
2. Design reference only  
4. RC Oscillator Mode with Internal Capacitor  
If both precision and cost are taken into consideration, EM78P257A/B also offers a special oscillation  
mode. It is equipped with an internal capacitor and an external resistor (connected to Vcc). The  
internal capacitor functions as temperature compensator. In order to obtain more accurate frequency,  
a precise resistor is recommended.  
Vcc  
Rext  
OSCI  
EM78P458  
EM78P459  
Fig. 23 Circuit for Internal C Oscillator Mode  
Table 15 R Oscillator Frequencies  
Rext  
Average Fosc 5V,25°C  
2.22 MHz  
Average Fosc 3V,25°C  
2.17 MHz  
51k  
100k  
300k  
1.15 MHz  
1.14 MHz  
375 KHz  
370 KHz  
<Note> 1. Measured on DIP packages.  
2. Design reference only  
This specification is subject to change without prior notice.  
49  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.13 Power-on Considerations  
Any microcontroller is not warranted to start proper operation before the power supply stabilizes in  
steady state.  
EM78P458/459 POR voltage range is 1.2V~1.8V. Under customer application, when power is OFF,  
Vdd must drop to below 1.2V and remains OFF for 10us before power can be switched ON again.  
This way, the EM78P458/459 will reset and work normally. The extra external reset circuit will work  
well if Vdd can rise at very fast speed (50 ms or less). However, under most cases where critical  
applications are involved, extra devices are required to assist in solving the power-up problems.  
1. External Power on Reset Circuit  
The circuit shown in Fig IV.13.1-1 implements an external RC to produce a reset pulse. The pulse  
width (time constant) should be kept long enough to allow Vdd to reach minimum operation voltage.  
This circuit is used when the power supply has a slow rise time. Because the current leakage from the  
/RESET pin is about ±5µA, it is recommended that R should not be great than 40 K. In this way, the  
voltage at Pin /RESET is held below 0.2V. The diode (D) acts as a short circuit at power-down. The  
capacitor, C, is discharged rapidly and fully. Rin, the current-limited resistor, prevents high current  
discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.  
VDD  
/RESET  
R
C
D
EM78P458  
EM78P459  
Rin  
Fig. 24 External Power on Reset Circuit  
2. Residue-Voltage Protection  
When battery is replaced, device power (Vdd) is taken off but residue-voltage remains. The  
residue-voltage may trips below Vdd minimum, but not to zero. This condition may cause a poor  
power on reset. Fig. 25 and Fig. 26 show how to build a residue-voltage protection circuit  
This specification is subject to change without prior notice.  
50  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
VDD  
VDD  
EM78P458  
33K  
EM78P459  
Q1  
10K  
/RESET  
100K  
1N4684  
Fig. 25  
Circuit 1 for the Residue Voltage Protection  
VDD  
VDD  
R1  
R2  
EM78P458  
EM78P459  
Q1  
R3  
/RESET  
Fig. 26 Circuit 2 for the Residue Voltage Protection  
4.14 CODE OPTION  
EM78P458/459 has one CODE option word and one Customer ID word that are not a part of the  
normal program memory.  
Word 0  
Bit12~Bit0  
Word 1  
Bit12~Bit0  
Code option12~0  
Code option12~0  
1. Code Option Register (Word 0)  
Bit12  
MS  
Bit11  
Bit10  
Bit9  
Bit8  
HLF  
Bit7  
Bit6  
Bit5~Bit0  
ID  
/ENWDT  
CLKS  
/PTB  
RCT  
HLP  
Bit 12 (MS): Oscillator type selection.  
0: RC type  
This specification is subject to change without prior notice.  
51  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
1: XTAL type  
Bit 11 (/ENWTD): Watchdog timer enable bit.  
0: Enable  
1: Disable  
Bit 10 (CLKS): Clocks of each instruction cycle.  
0: Two clocks  
1: Four clocks  
Refer to the section of Instruction Set.  
Bit 9 (/PTB): Protect bit.  
0: Enable  
1: Disable  
Bit 8 (HLF): XTAL frequency selection.  
0: Low frequency  
1: High frequency  
Bit 7 (RCT): Resistor Capacitor  
0: Inter C, External R  
1: External RC  
Bit 6 (HLP): Power consumption selection.  
0: Low power.  
1: High power.  
Bit 5 ~ Bit 0 (ID[5]~ID[0]): Customer’s ID.  
2. Code Option Register (Word 1)  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4~Bit0  
-
SIGN2  
VOF2[2]  
VOF2[1]  
VOF2[0]  
SIGN1  
VOF1[2]  
VOF1[1]  
VOF1[0]  
Bit 12 (SIGN2): Polarity bit of offset voltage.  
0: Negative voltage  
1: Positive voltage  
Bit 11 ~ Bit 9 (VOF2[2]~VOF2[0]): Offset voltage bits  
Bit 8 (SIGN1): Polarity bit of offset voltage.  
0: Negative voltage  
1: Positive voltage  
Bit 7 ~ Bit 5 (VOF1[2]~VOF210)): Offset voltage bits  
Bit 4 ~ Bit 0 : Not used.  
This specification is subject to change without prior notice.  
52  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.15 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more  
operands. Normally, all instructions are executed within one single instruction cycle (one instruction  
consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2,A",  
"ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6",  
"CLR R2", ⋅⋅⋅⋅). In this case, the execution takes two instruction cycles.  
In addition, the instruction set has the following features:  
(1) Every bit of any register can be set, cleared, or tested directly.  
(2) The I/O registers can be regarded as general registers. That is, the same instruction can operate  
on I/O registers.  
The symbol "R" represents a register designator that specifies which one of the registers (including  
operational registers and general-purpose registers) is to be utilized by the instruction. The symbol  
"b" represents a bit field designator that selects the value for the bit located in the register "R" that is  
affected by the operation. The symbol "k" represents an 8 or 10-bit constant or literal value.  
Table 16 The list of the instruction set of EM78P458/459  
INSTRUCTION BINARY HEX MNEMONIC  
OPERATION  
STATUS AFFECTED  
0 0000 0000 0000  
0 0000 0000 0001  
0 0000 0000 0010  
0 0000 0000 0011  
0 0000 0000 0100  
0 0000 0000 rrrr  
0 0000 0001 0000  
0 0000 0001 0001  
0 0000 0001 0010  
0 0000 0001 0011  
0 0000 0001 0100  
0 0000 0001 rrrr  
0 0000 01rr rrrr  
0 0000 1000 0000  
0 0000 11rr rrrr  
0 0001 00rr rrrr  
0 0001 01rr rrrr  
0 0001 10rr rrrr  
0 0001 11rr rrrr  
0 0010 00rr rrrr  
0 0010 01rr rrrr  
0 0010 10rr rrrr  
0 0010 11rr rrrr  
0 0011 00rr rrrr  
0 0011 01rr rrrr  
0000  
0001  
0002  
0003  
0004  
000r  
0010  
0011  
0012  
0013  
0014  
001r  
00rr  
0080  
00rr  
01rr  
01rr  
01rr  
01rr  
02rr  
02rr  
02rr  
NOP  
DAA  
CONTW  
SLEP  
WDTC  
IOW R  
ENI  
DISI  
RET  
RETI  
CONTR  
IOR R  
No Operation  
Decimal Adjust A  
A CONT  
None  
C
None  
T,P  
0 WDT, Stop oscillator  
0 WDT  
T,P  
None <Note1>  
A IOCR  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
[Top of Stack] PC, Enable Interrupt  
CONT A  
None  
None  
None  
None  
None  
None <Note1>  
IOCR A  
A R  
0 A  
0 R  
R-A A  
R-A R  
R-1 A  
R-1 R  
A VR A  
A VR R  
A & R A  
A & R R  
A R A  
MOV R,A  
CLRA  
None  
Z
Z
Z,C,DC  
Z,C,DC  
CLR R  
SUB A,R  
SUB R,A  
DECA R  
DEC R  
OR A,R  
OR R,A  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
Z
Z
Z
Z
Z
Z
Z
Z
02rr  
03rr  
03rr  
A R R  
This specification is subject to change without prior notice.  
53  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
INSTRUCTION BINARY HEX MNEMONIC  
OPERATION  
STATUS AFFECTED  
0 0011 10rr rrrr  
0 0011 11rr rrrr  
0 0100 00rr rrrr  
0 0100 01rr rrrr  
0 0100 10rr rrrr  
0 0100 11rr rrrr  
0 0101 00rr rrrr  
0 0101 01rr rrrr  
0 0101 10rr rrrr  
0 0101 11rr rrrr  
03rr  
03rr  
04rr  
04rr  
04rr  
04rr  
05rr  
05rr  
05rr  
05rr  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
INCA R  
INC R  
Z,C,DC  
Z,C,DC  
A + R A  
A + R R  
R A  
R R  
/R A  
/R R  
R+1 A  
R+1 R  
Z
Z
Z
Z
Z
Z
None  
None  
DJZA R  
DJZ R  
R-1 A, skip if zero  
R-1 R, skip if zero  
R(n) A(n-1),  
R(0) C, C A(7)  
R(n) R(n-1),  
R(0) C, C R(7)  
R(n) A(n+1),  
R(7) C, C A(0)  
R(n) R(n+1),  
R(7) C, C R(0)  
R(0-3) A(4-7),  
R(4-7) A(0-3)  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 R(b)  
0 0110 00rr rrrr  
0 0110 01rr rrrr  
0 0110 10rr rrrr  
0 0110 11rr rrrr  
0 0111 00rr rrrr  
06rr  
06rr  
06rr  
06rr  
07rr  
RRCA R  
RRC R  
C
C
RLCA R  
RLC R  
C
C
SWAPA R  
None  
0 0111 01rr rrrr  
0 0111 10rr rrrr  
0 0111 11rr rrrr  
0 100b bbrr rrrr  
0 101b bbrr rrrr  
0 110b bbrr rrrr  
0 111b bbrr rrrr  
07rr  
07rr  
07rr  
0xxx  
0xxx  
0xxx  
0xxx  
SWAP R  
JZA R  
JZ R  
BC R,b  
BS R,b  
JBC R,b  
JBS R,b  
None  
None  
None  
None <Note2>  
None <Note3>  
None  
1 R(b)  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP],  
(Page, k) PC  
(Page, k) PC  
k A  
None  
1 00kk kkkk kkkk  
1kkk  
CALL k  
None  
1 01kk kkkk kkkk  
1 1000 kkkk kkkk  
1 1001 kkkk kkkk  
1 1010 kkkk kkkk  
1 1011 kkkk kkkk  
1kkk  
18kk  
19kk  
1Akk  
1Bkk  
JMP k  
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
None  
None  
Z
Z
Z
A k A  
A & k A  
A k A  
k A,  
[Top of Stack] PC  
1 1100 kkkk kkkk  
1 1101 kkkk kkkk  
1 1110 0000 0001  
1 1111 kkkk kkkk  
0 0000 0010 0000  
1Ckk  
1Dkk  
1E01  
1Fkk  
0020  
RETL k  
SUB A,k  
INT  
None  
Z,C,DC  
None  
k-A A  
PC+1 [SP],  
001H PC  
k+A A  
R2+A R2  
ADD A,k  
TBL  
Z,C,DC  
Z,C,DC  
Bits 8~9 of R2 unchanged  
<Note 1> This instruction is applicable to IOC50~IOC60, IOC90~IOCF0, IOC51~IOCF1 only.  
<Note 2> This instruction is not recommended for RF operation.  
<Note 3> This instruction cannot operate under RF.  
This specification is subject to change without prior notice.  
54  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
4.16 Timing Diagrams  
AC Test Input/Output Waveform  
2.4  
0.4  
2.0  
0.8  
2.0  
0.8  
TEST POINTS  
AC Testing : Input is driven at 2.4V for logic "1",and 0.4V for logic "0".Timing measurements are  
made at 2.0V for logic "1",and 0.8V for logic "0".  
RESET Timing (CLK="0")  
Instruction 1  
NOP  
Executed  
CLK  
/RESET  
Tdrh  
TCC Input Timing (CLKS="0")  
Tins  
CLK  
TCC  
Ttcc  
This specification is subject to change without prior notice.  
55  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
5. ABSOLUTE MAXIMUM RATINGS  
Items  
Rating  
Temperature under bias  
Storage temperature  
Input voltage  
to  
to  
to  
to  
0°C  
70°C  
150°C  
+6.0V  
+6.0V  
-65°C  
-0.3V  
-0.3V  
Output voltage  
This specification is subject to change without prior notice.  
56  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
6. ELECTRICAL CHARACTERISTICS  
6.1 DC Electrical Characteristic(Ta=0°C ~ 70 °C, VDD=5.0V±5%, VSS=0V)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
XTAL: VDD to 3V  
XTAL: VDD to 5V  
RC: VDD to 5V  
DC  
DC  
F±30%  
8
20  
F±30%  
±1  
MHz  
MHz  
KHz  
µA  
V
V
V
V
V
V
V
V
V
V
V
V
Two cycle with two clocks  
Fxt  
760  
R: 5.1K, C: 100pF  
VIN = VDD, VSS  
Ports 5, 6  
IIL  
VIH1  
VIL1  
VIHT1  
VILT1  
VIHX1  
VILX1  
VIH2  
Input Leakage Current for input pins  
Input High Voltage,VDD=5V  
Input Low Voltage,VDD=5V  
Input High Threshold Voltage,VDD=5V  
Input Low Threshold Voltage,VDD=5V  
Clock Input High Voltage,VDD=5V  
Clock Input Low Voltage,VDD=5V  
Input High Voltage,VDD=3V  
Input Low Voltage,VDD=3V  
Input High Threshold Voltage,VDD=3V  
Input Low Threshold Voltage,VDD=3V  
Clock Input High Voltage,VDD=3V  
Clock Input Low Voltage,VDD=3V  
Output High Voltage  
2.0  
2.0  
2.5  
1.5  
1.5  
1.5  
Ports 5, 6  
0.8  
0.8  
1.0  
0.4  
0.4  
0.6  
/RESET, TCC  
/RESET, TCC  
OSCI  
OSCI  
Ports 5, 6  
VIL2  
Ports 5, 6  
VIHT2  
VILT2  
VIHX2  
VILX2  
/RESET, TCC  
/RESET, TCC  
OSCI  
OSCI  
VOH1  
IOH = -12.0 mA  
IOL = 12.0 mA  
2.4  
V
(Ports 5, 6)  
Output Low Voltage (P51~P57, P60~P63,  
P66~P67)  
VOL1  
VOL2  
IPH  
0.4  
0.4  
V
V
Output Low Voltage (P64,P65)  
IOL = 16.0 mA  
Pull-high active, input pin at  
VSS  
Pull-down active, input pin at  
VDD  
All input and I/O pins at VDD,  
output pin floating, WDT  
enabled  
All input and I/O pins at VDD,  
output pin floating, WDT  
disabled  
Pull-high current  
Pull-down current  
-50  
25  
-100  
50  
-240  
µA  
IPD  
ISB  
120  
10  
µA  
µA  
Power down current  
Power down current  
ISB  
1
µA  
µA  
/RESET='High',Fosc=32KHz  
Operating supply current (VDD=3V) at two (Crystal type, two clocks),  
ICC1  
15  
19  
30  
clocks  
output pin floating, WDT  
disabled  
/RESET=‘High',Fosc=32KHz  
Operating supply current (VDD=3V) at two (Crystal type, two clocks),  
ICC2  
35  
µA  
clocks  
output pin floating, WDT  
enabled  
/RESET='High', Fosc=2MHz  
(Crystal type, two clocks),  
output pin floating  
/RESET='High', Fosc=4MHz  
(Crystal type, two clocks),  
output pin floating  
Operating supply current (VDD=5.0V) at  
two clocks  
ICC3  
ICC4  
2
mA  
mA  
Operating supply current (VDD=5.0V) at  
two clocks  
4.0  
This specification is subject to change without prior notice.  
57  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
6.2 AC Electrical Characteristic(Ta=0°C ~ 70 °C, VDD=5V±5%, VSS=0V)  
Symbol  
Dclk  
Parameter  
Conditions  
Min  
Typ  
50  
Max  
Unit  
Input CLK duty cycle  
Instruction cycle time  
(CLKS="0")  
TCC input period  
Device reset hold time  
/RESET pulse width  
Watchdog timer period  
Input pin setup time  
Input pin hold time  
45  
100  
500  
(Tins+20)/N*  
9
55  
DC  
DC  
%
ns  
ns  
ns  
ms  
ns  
ms  
ms  
ms  
ms  
Crystal type  
RC type  
Tins  
Ttcc  
Tdrh  
Trst  
Twdt  
Tset  
18  
30  
30  
Ta = 25°C  
Ta = 25°C  
Ta = 25°C  
2000  
9
18  
0
20  
50  
Thold  
Tdelay  
Output pin delay time  
Cload=20pF  
*N= selected prescaler ratio.  
6.3 A/D Converter Characteristic(Vdd=3.0V to 5.5V,Vss=0V,Ta=0 to 70)  
Symbol  
VAREF  
VASS  
VAI  
IAI  
RN  
Parameter  
Condition  
Min.  
3.0  
Typ.  
Max.  
Vdd  
Vss  
VAREF  
1000  
8
Unit  
V
V
V
uA  
Bits  
LSB  
LSB  
LSB  
LSB  
VAREF - VASS2.5V  
Analog reference voltage  
Analog input voltage  
Analog supply current  
Resolution  
VASS  
500  
6
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd = 2.5 to 5.5V Ta=25℃  
Vdd = 2.5 to 5.5V Ta=25℃  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=VAREF=5.0V, VASS =0.0V  
700  
7
±2  
LN  
Linearity error  
0
±4  
DNL  
FSE  
OE  
Differential nonlinear error  
0
±0  
±0  
±0.5  
±2  
±1  
±0.9  
±4  
±2  
Full scale error  
Offset error  
Recommended impedance of  
analog voltage source  
A/D clock period  
A/D conversion time  
A/D OP input voltage range  
ZAI  
0
8
10  
K  
TAD  
TCN  
ADIV  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=VAREF=5.0V, VASS  
=0.0V,RL=10KΩ  
Vdd=VAREF=5.0V, VASS =0.0V  
Vdd=5.0V±0.5V  
3
10  
0
3.5  
4
10  
5
0.3  
5
us  
TAD  
V
0
0.2  
4.8  
0.3  
ADOV A/D OP output voltage swing  
V
4.7  
0.1  
±0  
ADSR  
PSR  
A/D OP slew rate  
Power Supply Rejection  
V/us  
LSB  
±2  
Note: 1.These parameters are characterized but not tested.  
2.These parameters are for design guidance only and are not tested.  
3.It will not consume any current other than minor leakage current, when A/D is off.  
4.The A/D conversion result never decrease with an increase in the input voltage, and has no  
missing code.  
5.Specifications subject to change without notice.  
6.4 Comparator(OP) Characteristic(Vdd = 5.0V,Vss=0V,Ta=0 to 70)  
Symbol  
SR  
Parameter  
Slew rate  
Condition  
Min.  
0.1  
Typ.  
0.2  
Max.  
Unit  
V/us  
This specification is subject to change without prior notice.  
58  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
IVR  
OVS  
Iop  
Input voltage range  
Output voltage swing  
Vdd =5.0V, VSS =0.0V  
0
0
4.7  
250  
5
0.3  
5
V
V
0.2  
4.8  
350  
Vd =5.0V, VSS =0.0V,RL=10KΩ  
Supply current of OP  
Power-supply Rejection Ration  
for OP  
500  
uA  
dB  
PSRR  
Vdd= 5.0V, VSS =0.0V  
Vdd= 5.0V, VSS =0.0V  
50  
60  
70  
Vos  
Vs  
Offset voltage  
Operating range  
±10  
±20  
5.5  
mV  
V
2.5  
Note: 1.These parameters are characterized but not tested.  
2.These parameters are for design guidance only and are not tested.  
3.Specifications subject to change without notice.  
This specification is subject to change without prior notice.  
59  
07.01.2003 (V1.3)  
 
EM78P458/459  
OTP ROM  
APPENDIX  
Package Types:  
OTP MCU  
Package Type  
DIP  
SOP  
Skinny DIP  
SOP  
Pin Count  
20 pin  
20 pin  
24 pin  
24 pin  
Package Size  
300mil  
EM78P458AP  
EM78P458AM  
EM78P459AK  
EM78P459AM  
300mil  
300mil  
300mil  
This specification is subject to change without prior notice.  
60  
07.01.2003 (V1.3)  
 

Everpure Water System IN 15 CR User Manual
FEIN Power Tools Drill ASy 630 User Manual
Fisher Paykel Cooktop GC901 User Manual
Ford Automobile 2010 Mustang User Manual
FujiFilm Digital Camera S2500HD Series User Manual
Garland Oven MP GD 10 S User Manual
GE Monogram Refrigerator Bottom Freezer Built In Refrigerator User Manual
GE Oven JKP30DP User Manual
GE Power Hammer AK 2A 50 User Manual
Global Upholstery Co Indoor Furnishings ST20 User Manual